import numpy as np
from math import sqrt
class A_star:
def __init__(self, start_point=[0, 0], end_point=[2, 2], matrix=[[True for i in range(3)] for j in range(3)], weights=1.1, Corner_amend=1, step=10000):
self.matrix = matrix
self.weights = weights
self.corner_amend = Corner_amend
self.matrix_length = len(self.matrix[0])
self.matrix_width = len(self.matrix)
self.start_point = self.sub2index(start_point) if type(start_point) != int else start_point
self.end_point = self.sub2index(end_point) if type(end_point) != int else end_point
self.startx, self.starty = self.index2sub(self.start_point)
self.endx, self.endy = self.index2sub(self.end_point)
self.step = step
if not (self.matrix[self.startx][self.starty] and self.matrix[self.endx][self.endy]):
exit("start or end is wall")
def a_star(self):
field = self.chansform_field()
fieldpointers = self.chansform_fieldpointers()
setopen = [self.start_point]
setopencosts = [0]
setopenheuristics = [float("inf")]
setclosed = []
setclosedcosts = []
movementdirections = ["R", "L", "D", "U"]
while self.end_point not in setopen and self.step:
self.step -= 1
total_costs = setopencosts + list(self.weights * np.array(setopenheuristics))
temp = np.min(setopencosts)
ii = total_costs.index(temp)
if setopen[ii] != self.start_point and self.corner_amend == 1:
new_ii = self.Path_optimization(temp, ii, fieldpointers, setopen, setopencosts, setopenheuristics)
ii = new_ii
[costs, heuristics, posinds] = self.findFValue(setopen[ii], setopencosts[ii], field, self.end_point)
setclosed = setclosed + [setopen[ii]]
setclosedcosts = setclosedcosts + [setopencosts[ii]]
setopen.pop(ii)
setopencosts.pop(ii)
setopenheuristics.pop(ii)
for jj in range(len(posinds)):
if float("Inf") != costs[jj]:
if not posinds[jj] in setclosed + setopen:
[row, col] = self.index2sub(posinds[jj])
fieldpointers[row][col] = movementdirections[jj]
setopen = setopen + [posinds[jj]]
setopencosts = setopencosts + [costs[jj]]
setopenheuristics = setopenheuristics + [heuristics[jj]]
elif posinds[jj] in setopen:
I = setopen.index(posinds[jj])
if setopencosts[I] > costs[jj]:
[row, col] = self.index2sub(setopen[I])
setopencosts[I] = costs[jj]
setopenheuristics[I] = heuristics[jj]
fieldpointers[row][col] = movementdirections[jj]
else:
I = setclosed.index(posinds[jj])
if setclosedcosts[I] > costs[jj]:
[row, col] = self.index2sub(setclosed[I])
setclosedcosts[I] = costs[jj]
fieldpointers[row][col] = movementdirections[jj]
if not setopen:
return None
if self.end_point in setopen:
rod = self.findWayBack(self.end_point, fieldpointers)
return rod
else:
exit("Can't")
def sub2index(self, array):
return int(array[1] * self.matrix_width + array[0] + 1)
def Path_optimization(self, temp, ii, fieldpointers, setOpen, setOpenCosts, setOpenHeuristics):
[row, col] = self.index2sub(setOpen[ii])
_temp = fieldpointers[row][col]
if _temp == "L":
Parent_node = setOpen[ii] - self.matrix_width
elif _temp == "R":
Parent_node = setOpen[ii] + self.matrix_width
elif _temp == "U":
Parent_node = setOpen[ii] - 1
elif _temp == "D":
Parent_node = setOpen[ii] + 1
if Parent_node == self.start_point:
new_ii = ii
else:
[row, col] = self.index2sub(Parent_node)
_temp = fieldpointers[row][col]
if _temp == "L":
Expected_note = Parent_node + self.matrix_width
elif _temp == "R":
Expected_note = Parent_node - self.matrix_width
elif _temp == "U":
Expected_note = Parent_node + 1
elif _temp == "D":
Expected_note = Parent_node - 1
if Expected_note < 0 or Expected_note > self.matrix_width * self.matrix_length - 1:
new_ii = ii
else:
[row, col] = self.index2sub(setOpen[ii])
[row2, col2] = self.index2sub(Parent_node)
if fieldpointers[row][col] == fieldpointers[row2][col2]:
new_ii = ii
elif Expected_note in setOpen:
untext_ii = setOpen.index(Expected_note)
now_cost = setOpenCosts[untext_ii] + self.weights * setOpenHeuristics[untext_ii]
if temp == now_cost:
new_ii = untext_ii
else:
new_ii = ii
else:
new_ii = ii
return new_ii
def findFValue(self, posind, costsofar, field, goalind):
currentpos = self.index2sub(posind)
goalpos = self.index2sub(goalind)
cost = [float("inf") for i in range(4)]
heuristic = [float("inf") for i in range(4)]
pos = np.ones(8).reshape(4, 2)
x = currentpos[0]
y = currentpos[1] - 1
if y >= 0:
pos[0, :] = [x, y]
heuristic[0] = sqrt((goalpos[1] - y) ** 2 + (goalpos[0] - x) ** 2)
cost[0] = costsofar + field[x][y]
x = currentpos[0]
y = currentpos[1] + 1
if y <= self.matrix_length - 1:
pos[1, :] = [x, y]
heuristic[1] = sqrt((goalpos[1] - y) ** 2 + (goalpos[0] - x) ** 2)
cost[1] = costsofar + field[x][y]
x = currentpos[0] - 1
y = currentpos[1]
if x >= 0:
pos[2, :] = [x, y]
heuristic[2] = sqrt((goalpos[1] - y) ** 2 + (goalpos[0] - x) ** 2)
cost[2] = costsofar + field[x][y]
x = currentpos[0] + 1
y = currentpos[1]
if x <= self.matrix_width - 1:
pos[3, :] = [x, y]
heuristic[3] = sqrt((goalpos[1] - y) ** 2 + (goalpos[0] - x) ** 2)
cost[3] = costsofar + field[x][y]
temp = [[pos[i, 0], pos[i, 1]] for i in range(4)]
posinds = [self.sub2index(i) for i in temp]
return [cost, heuristic, posinds]
def chansform_field(self):
field = np.ones((self.matrix_width, self.matrix_length))
for i in range(self.matrix_width):
for j in range(self.matrix_length):
if not self.matrix[i][j]:
field[i][j] = float("inf")
field[self.startx][self.starty] = 0
field[self.endx][self.endy] = 0
return field
def chansform_fieldpointers(self):
fieldpointers = []
for i in range(self.matrix_width):
temp = []
for j in range(self.matrix_length):
if self.matrix[i][j]:
temp.append(1)
else:
temp.append(float("inf"))
fieldpointers.append(temp)
fieldpointers[self.startx][self.starty] = "S"
fieldpointers[self.endx][self.endy] = "G"
return fieldpointers
def findWayBack(self, goalposind, fieldpointers):
posind = goalposind
p = self.index2sub(posind)
sum = [p]
x = p[0]
y = p[1]
while fieldpointers[x][y] != "S":
temp = fieldpointers[x][y]
if temp == "L":
y -= 1
elif temp == "R":
y += 1
elif temp == "U":
x -= 1
elif temp == "D":
x += 1
else:
print("Error Find way back")
exit()
sum.append([x, y])
return sum
def index2sub(self, posind):
row = (posind - 1) % self.matrix_width
col = (posind - 1) // self.matrix_width
return [int(row), int(col)]
if __name__ == "__main__":
A_star().a_star()